تمرين نموذجي عدد 04

تمرين: المعادلات والمتراجحات في $\mathbb{R}$

لتكن العبارة التالية $A = 9x^2 - 12x + 3$ حيث $x$ عدد حقيقي.

(1) احسب $A$ إذا كان $x = \frac{1}{3}$.

(2) بيّن أنّ $A = (3x - 2)^2 - 1$.

(3) أوجد حصراً لـ $A$ إذا كان $x \in ]1; 2[$.

(4) حلّ في $\mathbb{R}$ المعادلة $9x^2 + 3 = 12x$.

(5) حلّ في $\mathbb{R}$ المتراجحتين التاليتين:

أ) $9x^2 - 12x + 3 \leq 3x(3x - 1)$ ب) $\sqrt{A+1} < 5$

هل تريد مشاهدة الإصلاح المفصل؟

الحل النموذجي لهذا التمرين مع شرح تقنيات الحصر وحل المتراجحات الصماء متاح الآن.

اشترك الآن لمتابعة الحل

Teachers Info

Mansar Rached

Mansar Rached